Detecting hardware trojans using backside optical imaging of embedded watermarks


Hardware Trojans are a critical security threat to integrated circuits. We propose an optical method to detect and localize Trojans inserted during the chip fabrication stage. We engineer the fill cells in a standard cell library to be highly reflective at near-IR wavelengths so that they can be readily observed in an optical image taken through the backside of the chip. The pattern produced by their locations produces an easily measured watermark of the circuit layout. Replacement, modification or re-arrangement of these cells to add a Trojan can therefore be detected through rapid post-fabrication backside imaging. We evaluate our approach using various hardware blocks where the Trojan circuit area is less than 0.1% of the total area and it consumes less than 2% leakage power of the entire chip. In addition, we evaluate the tolerance of our methodology to background measurement noise and process variation.

In Design Automation Conference, IEEE.